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NMR relaxation data and those from many other physical mea-
surements are sums of exponentially decaying components, com-
bined with some unavoidable measurement noise. When decay data
are inverted in order to give quasi-continuous distributions of relax-

ation times, some smoothing of the distributions is normally imple-
mented to avoid excess variation. When the same distribution has
a sharp peak and a much broader peak or a "tail," as for many

porous media saturated with liquids, an inversion program using a
fixed smoothing coefficient may broaden the sharp peak and/or
break the wide peak or tail into several separate peaks, even if the
coefficient is adaptively chosen in accord with the noise level of
the data. We deal with this problem by using variable smoothing,
determined by iterative feedback in such a way that the smoothing
penalty is roughly constant. This uniform-penalty (UP) smoothing
can give sharp lines, not broadened more than is consistent with the
noise, and in the same distribution it can show a tail decades long
without breaking it up into several peaks. The noise level must be

known approximately, but it can be determined more than ade-
quately by a preliminary inversion. The same iterative procedure
is used to implement constraints such as non-negative (NN) or
monotonic-from-peak (MT). The significance of an additional re-
solved peak may be tested by finding the cost of using MT to force
a unimodal solution. A bimodal constraint can be applied. Decay
data representing sharp lines in contact with broad features can
require substantial computing time and some controls to stabilize
the iterative sequence. However, UP can be made to function
smoothly for a very wide variety of decay curves, which can be
processed without adjustment of parameters, including the dimen-
sionless smoothing parameters. Extensive testing has been done with
artificial data. Examples are shown for artificial data, biological
tissues, ceramic technology, and sandstones. Expressions are given
relating noise level to line width and for significance of increase or
decrease in error of fit. © 1998 Academic Press

INTRODUCTION

Nuclear magnetic relaxation data and many other kinds
of physical data represent sums or distributions of decaying

exponential functions. The decay curves and the correspond-
ing distributions of exponential components vary greatly in
character and complexity, but even the simplest relaxation
data, with even a small amount of the unavoidable measure-
ment noise, can be represented adequately by a wide variety

of distributions of relaxation times. If no constraints are
applied, such as smoothing or non-negativity, then these
distributions are not even bounded.

Many authors have discussed the inversion problem (1-
12) and given further references. Provencher (1) has pro-
vided an extensive discussion, and his CONTIN programs

are widely used. Most inversion schemes apply both smooth-
ing and other restrictions to prevent excessive detail in de-
rived distributions of relaxation times. The non-negative
(NN) constraint is usually applied on physical grounds, but
it also serves to prevent wild oscillations in distributions,
since an unnecessary but permissible high point is usually
nearly canceled by a nearby negative point when NN is not
applied. Another restriction is to limit the number of maxima
to a small number such as one or two (1). This, too, can often

eliminate spurious peaks and the undershoot that results from
the smoothing of large narrow peaks. Of course, these re-
strictions may or may not be appropriate to the data. Most
inversion processes minimize some function, usually mean-
square, of the residuals plus some penalty function of the
output distribution, together with constraints such as NN. A
seldom used alternative is to impose minimum variation or
variation-squared (5), subject to adequate fit to the data.

If the relaxation data have low noise level and are known

from physical considerations to correspond to a small num-
ber of very well separated relaxation times, then even graphi-
cal peeling of longest components from semi-log plots can

give times and amplitudes. Likewise, a nonlinear search by
computer can give these components. However, if the com-
ponents are not well separated, or if there is not valid a
priori knowledge of the number of components, it is easy
to misunderstand and misinterpret the computed results.

Another case is that of distributions with small numbers
of well-separated peaks of finite width. Again, we may or
may not have a priori reasons to know that a distribution is
of this form. If the peaks are well separated, most inversion
methods can give positions (relaxation times) and areas
(corresponding signal amplitudes ). If the peaks have similar
widths on a logarithmic time scale, then most methods for
inversion of relaxation data to get distributions of relaxation
times will give also the correct peak widths if the data noise
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is sufficiently low and if the inverted data are smoothed to
a degree appropriate to the noise level and peak width. If
two peaks differ greatly in width, then it is not possible to
choose a single smoothing parameter for the distribution that
will not broaden the narrower peak and/or break the wider
peak up into apparent multiple peaks.

The inversion problem is still more difficult when the
resolution of peaks is marginal, especially when one peak
is much larger than another. An especially difficult form of
relaxation time distribution is found for fluids in complex
porous media, such as brine in sandstone rocks, an important
problem in the oil industry. A common form of distribution
consists of a relatively high peak with a very long low tail
extending to shorter relaxation times, often to times as short
as a hundredth or a thousandth that of the peak. Such a tail,
although very low, may have sufficient area to represent a
substantial fraction of the initial signal (13, 14).

For several years we have dealt with this problem "manu-
ally" (13) by specifying widely different smoothing param-
eters for the relatively sharp peak and the long low tail. This
procedure can also prevent the undershoot usually found at
the sides of sharp peaks, which can give automatic minima
between peaks and adjacent lower and broader features. The
obvious drawback is that the choice of smoothing parameters
is highly subjective. A welcome feature of the manually
adjusted smoothing is that, with good data, the need for
the application of a non-negative constraint may be greatly
reduced or eliminated.

To reduce this subjectivity we have introduced negative
feedback in the smoothing of the computed distributions of
relaxation times to maintain roughly the same smoothing
penalty for each computed point in a distribution. Instead of
using a uniform smoothing coefficient, we vary the coeffi-
cient with relaxation time so as to keep the smoothing pen-
alty roughly uniform. In this process the smoothing coeffi-
cient may vary by as much as nine decades, thereby avoiding
the broadening of a very narrow peak and also avoiding
breaking a wide feature into several apparent peaks. In the
following we will first discuss the inversion problem and
approaches to smoothing and then describe uniform-penalty
(UP) smoothing.

INVERSION AND SMOOTHING

Relaxation Data

Most of our work with UP has been with longitudinal
relaxation (T1 ) data with random noise levels between 1%
and 0.05% of the relaxing signal and with data (typically
127 points) taken at equal intervals in q In t, where t is
data time, usually over ranges of more than four decades.
Data taken at equal intervals in q can best represent detail
in different parts of wide distributions of relaxation times
T, but transverse relaxation data ( T2 ), often by CPMG se-

quences, are inherently at equal intervals in t. These data
can be inverted with UP smoothing also, but some additional
bookkeeping is required.

We wish to compute a quasi-continuous distribution of
relaxation times T in the form of a set of discrete points
(usually from 80 to 110) covering about the same time range
as the data and equally spaced in Q = In T. This gives
spacings in q (data points) and Q (computed points) of the
order of 0.1 Np (Neper). As will be seen later, this spacing
is comparable to the minimum measurable peak half-width
for a noise level of 0.25% of the integrated signal from the
peak. To permit focus on the use of UP we will discuss only
good data sets in the above form, excluding data equally
spaced in time and avoiding data that do not adequately
cover the ranges of relaxation times.

Least-Squares Inversion with Smoothing

As we have said, many very different distributions of
relaxation times T can give adequate fits to a set of good
relaxation data. Very large amounts of detail can be intro-
duced in a distribution while still giving a good fit to the
data. In fact, by introducing a lot of spurious detail it is
possible to cancel some of the random noise that is part of
all instrumental data sets. We may choose among fits with
different amounts or types of detail on the basis of a priori
knowledge, but, in most cases, we should probably choose
what is in some sense the minimum amount of detail de-
manded by the data.

We wish to approximate a set of relaxation data s, , taken
at times t, equally spaced in q, = In t„ by a sum of M
exponential components,

si	 go +	 gk exp(—ti/Tk)	 xi,	 [1]
k=1

where Tk are the relaxation times equally spaced in Q = In
T and covering about the same range as The distribution
of amplitudes at relaxation times Tk (on the logarithmic time
scale) is gk , and go, the value of the signal at infinite time,
is also a regression parameter. The computed fit to the data
is xi , as shown in Eq. [1] . To avoid excessive detail a penalty
function is added to the squared error of fit, and their sum
is minimized. Common penalty functions are squares of am-
plitude, slope (first difference), or curvature ( second differ-
ence). The function to be minimized is then of the form

N	 M

( go +	 gk exp(-4/71) — si)2
i=1	 k=1

M-1

+ A	 gk + D	 (gk+i — gk)2
k=1
	

k=1
M-1

+ C	 (gk-1 — 2gk + gk+1) 2 , [2]
k =2
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FIG. 1. Model distribution for artificial relaxation data and distributions
computed with fixed smoothing parameters a (inversely proportional to the
smoothing coefficients C). The artificial relaxation data are computed from
the input distribution (model), which consists of a Gaussian line with
integrated amplitude 1000, centered at 500 ms and with half-width (at
e -1/2 x peak) 0.1 Np (Neper), plus a triangular tail withintegrated ampli-
tude 500 (representing an important one-third of the total initial signal)
and tapering from the peak at 500 ms to zero at 0.5 ms. Pseudo-random
noise with rms value 1.0 is added to the 127 artificial data points. The input
model distribution is the higher solid curve in the full view (a) and the
inner peak with triangular tail in the expanded view (b). The dashed curve
in both views is for a constant smoothing parameter a = 10'. The lower
solid curve in the full view (a), showing a wide peak and oscillatory tail
in the expanded view (b), is for a = 10 5 . The remaining curve, shown by

the unconnected computed points in both views, is for a 100. The
inversion has 110 points spaced at r,-,0.08 Np, and curvature smoothing is
applied. The a = 10' curve gives the correct noise value by slightly broad-
ening the peak and thereby incurring a small penalty, which is made up by
excessive detail on the tail, permitting the cancellation of some of the added
noise. Note that each computed curve returns to the baseline to the left of
the "real" peak, appearing to give one or more separate additional peaks.
The non-negative (NN) constraint is applied to the computed curves.

where A is the coefficient for amplitude smoothing, D (dif-
ference) for slope smoothing, and C (curvature) for curva-
ture smoothing (1, 9, 10, 13). We do not include the go term
in the penalty function. Usually only one of the three kinds
of smoothing is used, and curvature smoothing is used in
the present work.

Figure 1 shows the consequences of inversion with a fixed

smoothing parameter C when a set of data has both sharp
and broad features. Distributions of relaxation times are
shown ( as amount of initial signal per Neper of relaxation
time) for different inversions of a single set of artificial data
computed from a noise-free input distribution, or model, to
which Gaussian random noise with unit rms amplitude has
been added. In all cases the NN constraint, which often
has a physical basis, is applied. The input distribution is a
Gaussian peak with 0.1 Np half-width plus a triangular tail,
contributing one-third of the initial signal and tapering to
zero at short relaxation times. The smoothing effect of a
given C value depends on the signal-to-noise ratio SIN and
on the spacing of both the data points and the computed
points. We will specify the degree of smoothing by a parame-
ter a, which is inversely proportional to C ( see later, below
Eq. [9 ) and has a smoothing effect that is not dependent
(as for C) on the spacing of input data or of computed output
points. To get from the minimization of Eq. [2] an adequate
fit to the artificial data, represented in Fig. 1 and having
known pseudo-random noise, it is necessary to use a = 108.
This still broadens the sharp peak somewhat, but it also
breaks the tail into a number of separate peaks. In particular,
it leaves a substantial interval of baseline between the real
peak and the first spurious peak. The long tail needs many
orders of magnitude more smoothing, and the transition
needs to be abrupt. Even with a = 100 the tail appears as
a resolved separate peak, and the real peak is drastically
broadened.

It may be noted that there are no spurious peaks to the
right of the input peak. The NN constraint can prevent the
undershoot, but the tail of the Gaussian is lost. NN also
cancels zero-mean noise in the input time-domain data in
relaxation-time regions of the computed fit amplitudes with
little or no true signal; if the computed fit amplitude cannot
go negative, it cannot go positive and retain the zero mean.
To the left of the peak in Fig. 1, NN cannot prevent the
undershoot and oscillatory behavior, because the output can
go below its correct value without going negative.

In a sense, NN is overworked in many inversion proce-
dures. When the expected distribution of relaxation times
consists of one or several resolved peaks of different, but
not drastically different, widths, it may be possible to choose
an a that will not broaden the narrowest peak excessively
and also not break a wider or lower peak into multiple peaks.
In this case NN can prevent the undershoot at the sides of
the peaks, sharpening the peaks and suppressing the noise.
In this use NN serves more to stabilize a computation than
to suppress measurable nonphysical features of the input
data, such as effects of amplifier nonlinearity or drift. The
results are often satisfactory when the conditions just men-
tioned are valid. However, there are many sources of relax-
ation data where the distributions of times do not consist of
a few isolated peaks.

Relaxation data for visually homogeneous brine-saturated

111 1	 1	 1 1 1 1 1111	 1	 1 1 1 11111	 1	 1 1 1 11111

I



4000

3500

3000

2500

2000

1500

1000

500

0

-500

400

300

a)a'
200

100

-100

68	 BORGIA, BROWN, AND FANTAllINI

I	 I 1 1111 11 1 1 1 1111 I	 I I	 1 1 1111

1	 1 1 1111 1	 1 11111 I	 I I Ind	 I

1	 1 1 1111 1	 1 1	 1 1 1111 1; I 11	 1 1

	

1 1 1111
	

1	 1 1 1 1 1111	 I	 I 1 1 11111	 1	 I 1 1 1 1111	 I 1	 t 

	

1
	

10	 100	 1000
Relaxation Time (ms)

tioned as available in CONTIN (1), they appear not to be
widely used for NMR relaxation data. The acceptability of
the MT constraint can be tested by comparing the error of
fit with MT against that with NN and applying resolution

criteria, discussed later, to judge the significance of the extra
cost of MT in error of fit.

Just as NN can compensate for undersmoothing on por-
tions of distributions with noise but little or no signal, MT
can prevent undersmoothing on broad features, whether with
very little signal or with substantial signal. Of course, this
is useful only if the cost is not enough to prevent an adequate
fit to the data. Figure 2 shows the same artificial distribution
as Fig. 1. The stairstepped curve is computed with 'a fixed
a = 10 8 , using MT instead of NN. This gives a satisfactory
distribution so long as one does not try to interpret the stair-
steps. The use of MT prevents the extra peaks, but the trian-
gular part of the distribution is still undersmoothed.

The application of UP smoothing, to be described in a
later section, provides much stronger smoothing for the long
tail than for the sharp peak. In Fig. 2, the computed distribu-
tion using UP and NN cannot easily be distinguished from
the input distribution on the scales used in the figure. The
computation using UP but not using either NN or MT
(dashed lines) does show some undershoot on both sides of
the peak, with some consequent broadening of the peak, but
there is far less reliance on NN or MT than with fixed
smoothing parameter.

111111	 11
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FIG. 2. Distributions computed from the same artificial relaxation data
used in Fig. 1, with the model shown in both views as in Fig. 1. The lower
solid curve in the full view (a), which has the stair-stepped tail in the
expanded view (b), is computed with a fixed smoothing parameter a =
10 $ and with the monotonic-from-peak (MT) constraint ipstead of NN. A
third solid curve is shown in both views, which cannot be distinguished
from the model on the scales shown here, for the distribution computed
with uniform-penalty (UP) smoothing (to be described below) along with
NN. The dashed curve in both views is for UP without either NN or MT.
Here, the undershoot can be seen on both sides of the peak, and the peak
is significantly broadened. However, most of the wild oscillation shown in
Fig. 1 is avoided by the variable smoothing coefficient in UP.

oilfield rocks are often compatible with unimodal (with re-
spect to Q = in T) distributions from one to three or more
decades wide. There is a very wide variety of shapes, usually
with more detail in one region than another. There exist
examples with peaks with widths close to the minimum mea-
surable values at their particular noise levels but with tails
extending two or three decades. Thus, the artificial distribu-
tion of Fig. 1 is not unlike some found for fluids in the pores
of rocks, although many rocks do not show peaks quite this
sharp.

Distributions from the artificial data of Fig. 1 can be im-
proved by applying a monotonic-from-peak (MT) constraint
instead of NN, forcing the computed distribution to be uni-
modal. Although unimodal and bimodal constraints are men-

INVERSION WITH VARIABLE SMOOTHING

To introduce more equitable smoothing for sharp and
broad features we make A, D, and C in Eq. [2] variable,
with subscript k, and move them inside the summations.
Although variable smoothing can be implemented for am-
plitude, slope, or curvature smoothing, we will discuss
only curvature smoothing, which we have used for a num-
ber of years. We have not tried the UP approach with
amplitude or slope smoothing. The quantity to be mini-
mized is now

N	 M

( go +	 gk exp(-4 irk) — si)2
1=1	 k=1

M-1

+	 Ck(gk-1	 2gk	 gk+1)2, [3]
k=2

where Ck will be iteratively adjusted to be roughly recipro-
cal to the local curvature-squared (which itself depends on
the Ck).

If the components gk , s,, and xi make up the vectors g
(computed distribution, M + 1 components ), s (measured
noisy signal, N components ), and x (computed fit to the
signal, N components ), and if the components exp ( —t, /Tic)
make up the N X (M + 1) matrix U, we have x = Ug. The
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first term in Eq. [3] is then g ill – 2stUg + sts, with
the last of these a constant. We let UT = W . This (M +
1) X (M + 1) matrix need be computed only once for the
iterative computation of g.

For the second (penalty) term in Eq. [3] we first find the
contribution for unit Ck for a single k-value. This involves

gk-17 gk, and gk+i . The curvature (second difference) at the
kth computed point is V( k)g, where V( k) is an (M + 1) X
(M + 1) matrix containing all zero elements except for the
submatrix

1

(

0

0

0
—2

0
1
0)

0
[4]

centered at the kth diagonal point. The contribution to the
curvature squared is gtv(k)tv(k) g where V(k ) tV( k ) is a sym-
metrical matrix containing all zero elements except for the
submatrix

—2

(

1

1

—2
4

—2

1
—2) ,

1
[5]

centered at the kth diagonal element. We now form the
matrix K (Kriimmung: curvature) by multiplying each ma-
trix V(k)tV(k) by Ck and summing the matrices for all k-
values from 2 to M – 1. The total curvature penalty is gtKg.
Equation [3], and the quantity to be minimized, is now
given by

gtWg – 2stug sts	 [6]

We let stU = Y and minimize the above expression by
setting the gradient with respect to g to zero, giving

Wg + Kg = Y ; g = (W + K) -1Y.	 [7]

FEEDBACK FOR UNIFORM PENALTY

second-difference-squared values found at k – 1, k, or k +
1 from the previous iteration. That is, Ck for the next iteration
is inversely proportional to the largest second-difference-
squared found at k or a nearest neighbor. We can further
improve appearance in many cases by using second-nearest
neighbors or points from an even wider window. However,
a wide window interferes with implementing abrupt changes
in smoothing coefficient. It is also possible to use only slope-
squared feedback (instead of curvature feedback) for curva-
ture smoothing. In this case it is necessary to use the highest
slope-squared over a window extending about 0.3 Np in
relaxation time both above and below the point k. A useful
compromise was found to be the use of both curvature and
slope feedback, and for each k to use the highest values
found at the point or a nearest neighbor.

The smoothing coefficients Ck are coefficients of rigidity
for the computed distributions. Therefore, the feedback to
adjust the Ck to give roughly uniform penalty consists of
local compliance contributions from slope and curvature. We
let ck be the maximum value of [(g1 _ 1 – 2g1 + g1,1)
/6, 2j 2 for 1 = k 1, k, or k + 1. We likewise let pk
(pendenza: slope) be the maximum of [(gi+i – gi ) 1 AQ ] 2
for 1 = k – 1, k, or k + 1. The denominators, powers
of the output interval AQ in Q, make pk and ck discrete
approximations to the squares of first and second derivatives
of g(Q) and hence as nearly as possible independent of AQ.

These parameters from one iteration are used to give the
Ck's for the next.

Balance between Smoothing and Noise

The residuals term (left) and the penalty term (right) of
Eq. [3 ] should somehow be balanced in finding the quantity
to be minimized to get the distribution gk . We still need
global factors by which to multiply pk and ck to get Ck. We
represent the compliance determined in one iteration in the
form

a + appk + ac ck ,	 [8]

Feedback

To have a strictly uniform penalty, that is, the same contri-
bution to the right side of Eq. [3 ] for each value of k, we
would have to find a way to make Ck inversely proportional
to the square of the second difference. This can be done by
a series of iterations, starting with a fixed Ck and for each new
iteration letting Ck be inversely proportional to the square of
the second difference from the previous iteration. This does
give adequate fits to relaxation data, but it tends to give
distributions consisting of straight-line segments, with too
much detail in the form of abrupt bends. This can be im-
proved considerably by relaxing the uniform-penalty re-
quirement somewhat and using at each k the highest of the

where ao, a/3 , and a, are constants that are not changed from
one iteration to the next nor from one data set to the next.
The term ao is a compliance floor, which should be small
enough that it would never lead to undersmoothing, but
which should be large enough to be a "seed" for the devel-
opment of curvature in the iteration process.

For a good solution to good data the residuals term from
the minimization of Eq. [3 ] is primarily due to the noise-
squared. If R (rumore, Rauschen: noise) is the rms noise,
the residuals term from Eq. [3] should be of the order of
NR 2 if the fit is good. We assume that, in the vicinity of a
solution, the two terms in Eq. [3 ] should be comparable.
We need only proportionality, and we use proportionality to
the density of points 1 /6,, instead of to N, having in mind

NOTE Subsequent tests show that the data point spacing Aq
should not be explicitly related to the penalty, as it is in the
paragraph before the one with Eq. [9]. Therefore, O q2 in Eq. [9]
should be replaced by 0.08 A q , since we used k=0.08. No other
result, computation, discussion, or conclusion is affected.
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that data points well outside the range of relaxation times
will not contribute much to variability in iterative approach
to a solution. We could include R 2L6,, as a factor in Ck (and
we would do this to deal with data equally spaced in time,
where A, is not constant). However, in our implementation
we have instead normalized the input signal by dividing it
by RV and we have included a factor of O 9 

2 in Ck to
preserve the balance between noise and degree of smoothing.
This makes the screen display during a computation propor-
tional to an effective signal-to-noise ratio.

The amplitude is plotted as normalized signal per Np
of Q = In T. To approximate an integral of the form
f C(Q)(d 2 g 1 dQ 2 ) 2 dQ for the curvature penalty by a dis-
crete sum, we include a factor of the step size 6.(2 in the
coefficient Ck. We now have

Ck = [AqAQ(a0 appk + acck)] -1 •	 [9]

The symbol a ( without subscript) will be used to indicate
examples of fixed smoothing coefficient C, given in terms
of a0 = a and ap = ac = 0 by Eq. [9] .

CONSTRAINTS, CONVERGENCE, AND NOISE

Constraints: NN and MT

We use the same sequence of iterations to impose con-
straints, such as NN and MT. For each negative gk in one
iteration we impose NN by adding a large number to the
kth diagonal element of V (k)1 V(k) to force the corresponding
gk to be nearly zero in the next solution. By not forcing the
point exactly to zero, we retain knowledge of its sign, which
in some future iteration may cease to be negative, in which
case the constraint for that point can be removed.

Likewise, we can reduce the slope for a pair of points
nearly to zero by multiplying the submatrix (analogous to
Eq. [5 ] for curvature),

( 1 -1
-1	 1 '

by a large number and centering it between the diagonal
elements k and k + 1 of V(k ) tV( k). We can impose MT for
sections of the computed distribution by reducing the slope
nearly to zero when the slope is in the "wrong" direction.
Again, we retain knowledge of the sign by not forcing the
slope exactly to zero, and we can remove the constraint if
it ceases to be needed.

We have also used a hybrid MT and NN constraint to
allow a bimodal solution, where MT is applied before one
peak and after the other, with NN applied between peaks.
An example of this is shown later, in connection with Fig.
6. Another use of MT, not illustrated in this work, is to

apply MT over short ranges of AQ in order to remove un-
physically sharp minima caused by undershoot.

In some cases we have tried to deal with nonideal data
by imposing special constraints on the first and last points
or the first and last several points, but, as we have said, the
present discussion is focused on UP and is therefore limited
to good data with random noise only and with adequate
coverage of relaxation times.

Convergence

The iterative procedure for any combination of UP, NN,
and MT does not necessarily converge. However, with rea-
sonable parameters, it usually does converge for data sets
not including overlapping broad features and sharp lines and
for many data sets that do. With both sharp and broad fea-
tures in contact it may take 30 or more iterations to settle
to an approximate distribution with nearly constant error of
fit, but it may never settle to one exact solution. To stabilize
the iteration process at this stage (but not before), we use,
for each k-value for the next iteration, the smaller of the
newly computed Ck or the Ck that was used in the current
iteration. It may be necessary also to suppress changes in the
smoothing coefficients Ck when a large undershoot (negative
point, to be suppressed in the next iteration) appears. This
can break a nonproductive cycle of iterations. Also in such
cases, it may be necessary to terminate iteration when the
rms error of fit ceases to change significantly even if the
changes in the Ck's do not converge to zero. These controls
on the iterative process usually lead to a nearly steady state
with substantially constant error of fit and without wandering
appreciably from a region of nonconverging approximate
solutions.

The computing time depends roughly on the cube of the
number of computed points. Our computation is written in
True Basic and run on a Pentium-90 computer, and we nor-
mally compute 110 points on a distribution of relaxation
times, plus signal at infinite time. For each iteration it is
necessary to invert a 111 X 111 matrix, which takes about
6 s. Each iteration takes about 12 s, so about 5 min is needed
if 25 iterations are required. When very sharp features are
absent, computing time is much less. It should be noted,
however, that UP makes its greatest contribution when there
are both broad and sharp features.

Coefficients, Artificial Data, and Noise

The coefficient ao in Eq. [9] should be chosen as large
as possible without undersmoothing the widest distributions
of interest. This is not critical. We have determined tentative
values of ap and ac by setting one of them to zero and getting
reasonable fits to artificial data with the other while using a
window ( see Feedback section) of ±0.3 Np for determining
maximum compliance (pk or ck) to use for a given k-value.
Finally, we have made many computations with many forms

[10]
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of artificial data to select the a's. Good results are obtained
with ao = 1000 (but smaller for very wide distributions with
low SIN), ap = 50, and a, = 10. A wide variety of relaxation
data can be inverted, giving the right scatter due to noise
without changing the above a's.

We generate artificial data with pseudo-random noise,
each noise point being obtained by subtracting 6 from the
sum of 12 independent samples of pseudo-random numbers
from a uniform distribution from 0 to 1, giving rms noise
1.0 and an approximately Gaussian distribution. In each case
we record for reference the actual rms noise for the individ-
ual set of N artificial data points on a relaxation curve. We
do not remove the mean, since our inversion computes the
value for infinite time. Even for sets of N = 127 data points,
there can be relative scatter ( with respect to the ensemble
mean value, N) of the sum of errors-squared of the order
of i2TV, or 12.5% from data set to data set. This corresponds
to a 6.3% variation in the rms noise for data sets of 127
points.

In processing an individual data set we deal with only
one set of noise values, added to the signal values. Any fit
to the noisy data set will make some accommodation to
the noise, even if the fit is oversmoothed. Thus, adjusting
smoothing parameters so that the rms residual is equal to
the rms added noise results in slight oversmoothing, since
some of the noise is still accommodated by the fit.

To adjust global smoothing parameters and to test UP we
need to estimate the desirable level of the residual scatter
for a fit. From artificial data, usually with 127 points, we
have guessed an effective number of degrees of freedom,
such as 7 (3 components: 3 amplitudes, 3 relaxation times,
and signal at infinite time) to use with the number of data
points and the known level of the added noise. For both
artificial and natural data, we can get the residual scatter
from a multicomponent discrete fit with up to 7 components
(15 parameters) to the relaxation data. This has the advan-
tage of having no smoothing parameters to choose. Addi-
tional components are computed until the best way to reduce
the sum of residuals is to use a negative component or a
component out of the range of the data times. An additional
component is not used if its use does not reduce the standard
deviation of the residuals. Agreement with the known noise
of artificial data is very good.

We have two separate uses for a prior knowledge of the
noise level. One is the normalization of the signal discussed
just above Eq. [9]. This affects the smoothing in the compu-
tation, but it is not critical with respect to small changes,
such as some tens percent. Even a factor of 2 is not drastic. If
we have no prior knowledge of the noise level, a preliminary
inversion would normally give a more than adequate value
for the normalization. The other use for a prior knowledge
of the noise is for selecting the a's. For this, we should
know the noise level within from one to three percent for
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FIG. 3. Noise only, with unit rms amplitude, inverted without NN, MT,
or UP (identified under Fig. 2). The solid curve (a) is for a = 10 10 and
is divided by 3400. The dashed curve (b) is for a = 10 6 and is divided by
170. The curve with the unconnected dots (c) is for a = 10 2 and is divided
by 1.3. The smoothed fits reduce the input noise by 12.4%, 8.2%, and 4.1%,
respectively. As a is increased (smoothing decreased) both amplitude and
frequency of the excursions increase, and the rms scatter decreases. There
is great variability from one set of noise values to another, but processing
many sets of noise suggests that each cycle of the quasiperiodic oscillation
tends to remove from the input noise about 2.2 degrees of freedom in
addition to the two that would be removed by forcing the distribution to
be a straight line.

the ranges of parameters discussed here. However, after the
a's have been selected by prior computation with artificial
data, we do not need more than rough prior knowledge of
the noise.

The Noise by Itself

Figure 3 shows one sample of noise by itself inverted
with fixed smoothing coefficient C and without NN, MT, or.
UP. Even a heavily smoothed fit removes some degrees of
freedom and reduces the rms residual below the input noise.
Clearly, the less the smoothing the more the fit can maneuver
to accommodate the noise. The curve with the most oscilla-
tions ( solid) reduces the noise by 12.4%, has a = ao = 1010
( and a„ = a,, = 0), and is divided by 3400 for presentation
on the scale shown. The dashed curve reduces noise by 8.2%,
has a = 10 6 , and is divided by 170. The curve with the
unconnected dots reduces noise by 4.1%, has a = 10 2 , and
is divided by 1.3. The increase of amplitude and frequency
of the excursions with decreased smoothing is accompanied
by a decrease in the rins scatter. However, these features are
highly variable from one set of noise values to another.
Numerous sets of noise were processed with a = 10 m for
integer m from 1 to 11, and cycles of quasi-periodic oscilla-
tion were counted (somewhat subjective). When the reduc-
tion of noise and cycles of oscillation were averaged for the
sets of noise, a straight-line relationship (not shown) was
found, suggesting that a cycle of oscillation tends to remove
roughly 2.2 degrees of freedom in addition to the 2 that
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would be removed by forcing the distribution to be a straight
line with no oscillation at all.

RESOLUTION

Resolution of Two Lines

A rough criterion for the resolvability of two sharp lines
can be inferred from Eq. [10] of Ref. (15) for the least
maximum absolute error (LMAE) of fit to a rectangular
distribution by two discrete exponential components. An ap-
proximate expression for the LMAE relative to initial signal,
in terms of the line separation factor Y, is

2

E2 = 	  ; y = (1n Y) 2/ 12. [11]
6.87 + 15.9y + 7.2y2'

Our ability to resolve the difference between the rectangular
distribution and the two lines depends on our signal-to-noise
ratio S/N and the density of data points in the region where
the differences exist. Some rough simulations suggest that
the effective region in signal time of significant signal differ-
ences corresponding to localized differences in distributions
of relaxation times is of the order of a Neper. Thus, we have
effectively 1/A, points helping statistically to determine the
difference between models and reducing the required S/N
by a factor of CA7 . We then get a required S/N for resolution
of two roughly equal lines,

SIN VLYgl E2 .	 [12]

For Y = 3 we get E2 = 0.0012. If 127 data points extend in
equal q-steps from 0.4 ms to 10 s, A, = 0.080, and S/N
240 is a rough boundary for marginal resolution.

Figure 4 shows the UP-NN computations (with cro =
1000, ap = 50, a, = 10) for four sets of artificial data with
different selections of random noise with unit rms amplitude
and with sharp lines for signal amplitude 100 each and a
factor of 3 apart in relaxation time. Thus, S/N = 200, slightly
less than the value 240 computed above for marginal resolu-
tion. We note that three of the four curves do not "resolve"
the two lines. The curve with the two peaks does not have
the lowest fit error relative to its added noise.

The above computations were repeated with a, = 30 in-
stead of the "normal" 10. Here, each of the four curves
gave two peaks. However, as before, the improvement in fit
did not warrant the distinction between two peaks and a
continuous distribution. The above were done also with addi-
tional sets of artificial data (not shown) with each peak of
amplitude 250 instead of 100. In this case SIN = 500, which
is well over 240, rather than slightly less. For these data the
normal a's gave the two resolved peaks in all cases. Still
another variation used pairs of identical Gaussian distribu-
tions meeting at two half-widths from their centers. The
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FIG. 4. Marginal resolution from artificial data for sharp lines at 104
ms and 310 ms, a factor of 3. Each of the two lines corresponds to a single
exponential with initial signal = 100. The two peak positions are indicated
by the two pairs of nearly vertical lines. Each of the four remaining curves
shown is computed from a set of artificial data generated from the same
model, but with an independent set of random noise values having unit rms
amplitude. Inversions were made using UP-NN. One of the four curves
(mixed dashes) breaks into two peaks at about the right positions, but the
residual error of fit relative to the rms value of the its added random noise
is not the lowest for the four curves. The other three ( short-dashed curve,
long-dashed curve, and on-scale solid curve) can be made to give two peaks
by increasing the curvature-feedback compliance parameter from a, = 10
to a, = 30, but improvement in fit is not enough to give confidence that
there are separate peaks. The two peaks are always resolved (with a, =
10) when each line amplitude is increased to 250 (not shown) instead of
100. The results were substantially the same for two Gaussian lines (not
shown) meeting at two half-widths from their centers.

results (not shown) were substantially identical to those for
the pairs of sharp lines.

Linewidth Due to Noise

When noise is present, even a single -exponential signal
can give a distribution with finite width. Equation [6] of
Ref. (15) gives E1 , the LMAE for fit to a narrow rectangular
distribution by a single line, analogous to Eq. [11] for two
lines,

Et = 0.1086 w 2 ,	 [13]

where w is the half-width of the line in Np. In analogy with
Eq. [12] , we account for the density of data points by letting
SIN ='/E1 , giving

	

w = 3.0 44/ Fa.	 [14]

With S/N = 100 for a distribution consisting of a single line
(as for each line of Fig. 4) and with the input data point
spacing A, = 0.080 (127 points over a range of a factor of
25,000), w = 0.16 Np. Thus, the line half-width is about
twice the output point spacing, Ada = 0.093 (110 output
points over a factor of 25,000). Increasing of SIN to 400
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would give w A, for the above parameters. These values
of w apply to isolated lines "protected" by either NN or
MT, and the value of SIN applies to the line itself, not
including other features of the distribution.

Significance Criteria for Improvement in Fit

As we have seen, it is possible to have quite different
distributions adequately fitting a set of relaxation data. How-
ever, it is frequently useful to compare two or more solutions
with differences due to the application of an additional con-
straint or of a change in a smoothing parameter, with the
changes limited to a small range of relaxation times. It is
not easy to decide by comparing fit errors alone whether
one solution is significantly better than another. One problem
is that a change primarily affecting one region, such as the
foot of a peak, may also unintentionally and inconspicuously
change the fit elsewhere, possible at very short times. How-
ever, we can estimate a minimum cost (13, 15) to warrant
rejecting a restriction.

If a localized change in a distribution affects the corre-
sponding decay curve over about a Neper, as discussed
above, a change is not significant unless it affects the sum
of errors-squared more than the probable effect of a different
set of random noise values over this range. If there are
enough points in this interval, the  variability of the noise-
squared is by a factor of about V2A,, where 1/A, is the
number of points per Np. This factor times the number of
points per Np is the variability, V2/ A,, in the expected sum
of noise-squared, N ( with unit rms noise). This is a relative
change of A/2/ A g/N in the sum of errors-squared, giving a
relative change in the rms fit error of half this amount,

1/(NV20,).	 [15]

With N = 127 and A, = 0.080, Eq. [15] gives 2.0% as the
relative increase in rms fit error for marginal significance of
the extra cost of a constraint. This should be in addition to
the cost of the roughly 2.2 fewer degrees of freedom for
accommodating the noise if a cycle of oscillation is pre-
vented by a constraint.

False Resolution from a Rectangular Distribution

The model for a set of artificial data is shown by the solid
curve in Fig. 5. A rectangular distribution covers relaxation
times over a factor of 7, with shape slightly affected by the
necessary interpolation. As can be determined from Eq. [11]
of Ref. (15), a rectangular distribution over a factor of 7
can be well approximated by two (not quite equal) lines
spaced a factor of 3, as for the lines of Fig. 4. The integrated
signal for the model is 200, and unit noise is added, as for
Fig. 4. The line with the long dashes shows the UP-NN
distribution computed with the normal parameters. The ends

200

a)z
210

FIG. 5. Marginal false resolution from artificial data for a rectangular
distribution. The solid curve is the input rectangular distribution (interpo-
lated) with width a factor of 7, which can be well approximated by two
(not precisely equal) lines a factor of 3 apart, as for the two lines of the
model for Fig. 4. The area in the peak is 200, just as for the sum of the
two lines of Fig. 4, and there is again unit rms noise. The curve with the

long dashes is UP-NN with the curvature feedback parameter a, = 10
(normal), and the corresponding UP-MT (not shown) is substantially iden-
tical. The curve with two peaks, shown by the short dashes, is UP-NN with
a, increased to 30, the value that was required to get two separate peaks
for all curves of Fig. 4.

are rounded, but the fit is good. If we increase a, from 10
to 30, we resolve two false peaks, shown by the short-dashed
curves, and improve the fit by 1% of the noise value. As
mentioned before, this improvement is roughly equivalent
to the removal of 2.2 degrees of freedom to accommodate
noise by introducing a cycle of oscillation.

Resolution of Lines on a Pedestal

Although it was shown that UP can greatly decrease the
reliance on NN, it does not by itself completely prevent
undershoot and line broadening in the immediate vicinity of
a sharp feature in a distribution. The resolution criterion of
Eqs. [11], [12] does not apply unless we know that the
choice is between either two sharp lines by themselves or
else a compact distribution, such as rectangular or Gaussian,
by itself. The solid curves in Fig. 6 show the input distribu-
tion for a pair of sharp lines a factor of 3 apart and on a
wide pedestal. The short-dashed curve in the lower view is
UP-NN for lines in the model with amplitudes 250 each
and with unit noise. The mixed-dash curve is the same for
amplitudes 500 each ( and with a different noise vector, again

with unit rms amplitude). In each case there is substantial
undershoot below the pedestal, and the lines are not resolved.
The undershoot is greater for the larger amplitude. If we
increase the amplitude further, so that the undershoot is inter-
cepted by NN (not shown), then the lines become resolved.

The unconnected plus signs ( + ) are for UP-MT, which
avoids the undershoot but which, by its nature, does not
permit two peaks. The upper view shows the input distribu-
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or may not be appropriate for a data set for an unknown
sample. In the latter case we may be able to judge the appro-
priateness of these constraints by the cost in terms of fit
error.

Areas of Overlapping Peaks and of Undershoot

When, with UP-NN processing with normal parameters,
two peaks appear separated by either a deep valley or a
few points of baseline, it is clear that the phenomenon of
undershoot has enhanced the valley or even brought the
distribution down to the baseline for the few points. As
computations with artificial data for pairs of Gaussian distri-
bution with various combinations of heights, widths, and

AAPM

separations have shown, a few points of baseline in a com-
puted distribution do not mean that the "real" peaks do not
overlap. However, when the peaks are more than marginally
resolved, according to the criterion of excess cost of the MT
constraint, the areas of the peaks, as shown on cumulative
distributions, are about right even when there is considerable
disparity between the peaks. As always, the accuracy for a
very small peak is limited. When UP is run without NN or
MT on isolated peaks ( or with NN for a peak on a pedestal,
as discussed just above) the integrated area of the undershoot
is usually between 1% and 5% that of the peak. This appears
to be about the same for any value of SIN that permits a
sharp peak. However, this percentage varies erratically with

10000 changes in AQ or positions of the output points and with
independent samples of the noise.

FIG. 6. Nonresolution of two single-line peaks, a factor of 3 apart, on
a pedestal. Artificial data were generated for a model in which the area of
the pedestal is 1000, that of each peak is 250, and unit rms noise is added.
Without the pedestal these peaks are easily resolved by UP-NN with normal
parameters. The solid curve is the input distribution in both displays. The
short-dashed curve in the lower display (b) is computed by UP-NN. The
unconnected plus signs ( + ) in (b) are for UP-MT for the same data. By
its nature, MT cannot resolve the two peaks, but it does prevent the under-
shoot at the sides of the wide computed peak. The mixed-dash curve in the
lower display is UP-NN for a model with the same pedestal but with each
peak having area 500 instead of 250 and with a different selection of random
noise, still with unit amplitude. The two peaks are still not resolved. If the
signal is increased (with noise constant) until the undershoot goes negative
and is intercepted by NN, then the peaks become resolved (not shown).
The upper view (a) shows the input distribution (solid curve), and the
dashed line is UP with a hybrid MT-NN, in which MT is applied before
the first and after the second peak, while NN is applied between peaks.
This bimodal constraint restores resolution of the lines.

tion (solid) and a UP solution with hybrid MT-NN con-
straints, where MT is applied before the first peak and after
the second peak and where NN is applied between peaks.
The peaks are now resolved and narrow, much as they are
in the absence of the pedestal. The hybrid MT-NN constraint
supplies information to permit identification of the sharp
peaks much as NN does in the absence of the pedestal. In
this example these constraints are appropriate, but they may

EXAMPLES

Biological Tissues

Figure 7 shows relaxation curves for a tumor-free portion
of a length of human intestine resected because of cancer
(16). The solid curve is for UP-NN, showing a peak with
half-width 0.21 Np (measured at e -1/2 height of peak) and
with a tail representing about 24% of the signal. The long-
dashed curve is with fixed a = 10 6 with NN. The half-width
of the peak is doubled, and a single satellite peak is shown
representing 14% of the signal. The rms error of fit is 3.1%
higher than for UP-NN, an amount which is slightly larger
than the rough 2.0% found above to be marginally signifi-
cant. The curve with the unconnected plotted points is also
for fixed a = 10 6 but with MT instead of NN, and the
cost of eliminating the extra peak is about 0.3%, which is
insignificant.

The short-dashed curve in Fig. 7 is for fixed a = 10 7 with
NN and shows two satellite peaks. The error of fit is 0.4%
higher (insignificant) than for UP-NN, and the half-width
is 1.8X that of UP-NN. This appears to be an example of
the case where a fixed smoothing parameter oversmoothes
a narrow peak and undersmoothes a broader feature, whether
the "real" feature is a tail or a smaller and wider additional
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FIG. 7. Tissue from human intestine. The sample is a noncancerous
piece of tissue from a length of intestine resected because of cancer. The
solid curve is by UP-NN and consists of a peak and a tail. The short-dashed
line, with two satellite peaks, is computed with constant a = 10' and NN,
with rms error of fit an insignificant 0.4% higher. The long-dashed curve,

with the single satellite peak, is for fixed a = 10 6 and NN. The rms error
of fit is 3.1% more than for UP-NN, slightly over the approximate 2.0%
for marginal significance. The unconnected plotted points are for a = 106
with MT, and the cost of this constraint is insignificant. These relaxation
data cannot by themselves tell us whether the tail is connected to the main
peak or is one or more separate populations clearly separated in relaxation
time from the peak. UP appears to give the least division into separate
populations consistent with the data.

Ceramic Technology

Figure 8 shows distributions of relaxation times computed
by UP-NN for ceramic samples which had been fired at
950°C ( a), 1000°C (b), 1050°C (c), 1100°C (d), and
1150°C (e); cooled; and saturated with water (17). The
progression is to longer relaxation times with higher temper-
atures. At the lowest temperature the peak extends to 10 ms
or slightly less. At higher temperatures, except for the high-
est, a tail still extends to a little below 10 ms, with the tails
becoming smaller with increasing temperature. The UP-NN
processing preserves even the very small tails without break-
ing them up into separate peaks. For these samples we have
no a priori reason to expect separate peaks. At higher firing
temperatures pores become larger and surfaces become
smoother, leading to decreased surface-to-volume ratio and
giving the longer relaxation times observed. As temperature
is increased, sintering appears to eliminate the very small
pores that contribute to the tail.

Porous Oilfield Sandstones

Figure 9 shows distributions of relaxation times for four
oilfield sandstone samples which are relatively free of clay
minerals and which are saturated with brine. These samples
appear homogeneous to the eye, and porosities range from
3% to 16%. Each of the four distributions has significant
contributions to the signal for relaxation times ranging over
a factor of 1000. Each of the four distributions fits the data
with rms scatter within about 1% that of the discrete multiex-
ponential fits discussed under Coefficients, Artificial Data,
and Noise. This guarantees that the peaks have not been
broadened by oversmoothing for the two distributions that
have peaks, and it can be seen that all'the curves are smooth

peak. The fixed smoothing parameter is a compromise be-
tween those needed for the two features, incurring a penalty
for widening the peak and compensating for this by the
oscillations in the broader feature, as discussed in connection
with Fig. 3. The larger satellite peak represents 13% of the
signal, and the smaller represents about 3.5%, with a sum
of 16.5% of the signal separate from the main peak. It may
be that broadening the peak (with respect to UP-NN) results
in the inclusion of several percent of the tail ( or second
peak) in the main peak.

It should be emphasized that this set of relaxation data
cannot by itself provide a firm choice between a tail and a
second peak. If we have additional information, or if we
make the hypothesis, that the distribution consists of a com-
pact peak without any tail plus a wider additional peak, we
can make an interpretation from any of the above displays.
However, accuracy is limited, as the above different values
of fractions of the total signal outside the main peak suggest.

io	 loo	 1000

Relaxation Time (ms)

FIG. 8. Ceramic samples fired at different temperatures. Samples of
the starting material for ceramics (so-called "green bodies") were fired,
cooled, and saturated with water. Then T1 relaxation data were taken, and
distributions of relaxation times were computed by UP-NN and shown for
the sequence of temperatures, 950°C (a), 1000°C (b), 1050°C (c), 1100°C
(d), and 1150°C (e). Note the progressive loss with increased firing temper-
ature of the tails at short relaxation times.
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FIG. 9. Distributions computed using UP-NN from experimental NMR
T, relaxation data for four visually homogeneous oilfield sandstone samples
saturated with brine. The four samples were chosen all to have wide ranges
of relaxation times but to exhibit quite different relaxation time distributions.
Sample (a) has only 3% porosity and less than 0.1 mD permeability to
fluid flow. (A Darcy is about a (ktm) z and is a fairly large permeability for
oil production; a mD is a small value.) Curves (b), (c), and (d) all have
porosities in the 13-16% range. Permeability is not known for (b); it is
14 mD for (c) and 860 mD for (d). Long relaxation times correlate with
high permeabilities. Note that all these curves are unimodal, as are most,
but not all, distributions we have produced for brine-saturated sandstones
that are visually homogeneous.

ration between the two largest peaks. The width of the largest
peak is substantially reduced for these two distributions, as
can be seen in the inset figure showing the various represen-
tations of the largest peak. Cumulative distributions (not
shown) for the computed distributions for the artificial data
give the signals corresponding to the large peak (71%) to
within 3.5% of the total signal.

As always, there is the possibility that one might have
information in addition to that from the relaxation curve.
For instance, if one knew a priori that the measured relax-
ation curve represented the sum of three Gaussian distribu-
tions, the amplitudes and widths could be estimated reason-
ably well from the relaxation data. However, in the case of
the sandstone sample for Fig. 10, we do not have any con-
vincing basis for a two- or three-compartment model,
Gaussian or otherwise.

DISCUSSION AND CONCLUSIONS

The basic objective of UP inversion of relaxation curves is
to give appropriate amounts of detail to both sharp and broad
features, even when they appear on the same distribution of
relaxation times. We have used an iterative procedure to imple-

and unimodal. The good fit shows that additional detail is
not needed for these data sets. It does not show that more
complex solutions are wrong, and it does not show that data
for the same samples taken with higher S/N or with the
averaging of many signals could not require more detail.

Figure 10 shows computed distributions for a brine-satu-
rated sandstone sample that has either a satellite peak or a
knee several times as broad as the main peak and represent-
ing of the order of 20% of the initial signal. In turn, a tail
or else still broader peak, representing about 10% of the
signal, extends to still shorter times. The inset figure shows
the region of the main peak. The diagonal squares are for
the UP-NN computation, and the dashed line without plotted
points is for UP-MT. The cost of the MT constraint was
2.4% of the rms noise level, which is marginal for resolving
a separate peak from the main peak.

A solution (not shown) with UP and with MT before the
middle peak and after the highest peak, and with NN between
the two highest peaks, costs only 0.5% over UP-NN in addi-
tional scatter. Thus, the cost of preventing a minimum be-
tween the two smallest peaks is not even close to significant.

Rough simulations were made by means of three Gaussi-
ans as identified in the caption for Fig. 10. The same model
was used with four selections of random noise. The distribu-
tions computed by UP-NN from the four sets of artificial
data are shown by solid lines without plotted points. Two
of these curves have substantial minima between the two
smallest peaks, and the same two have greatly reduced sepa-

FIG. 10. Marginal resolution of a satellite peak (or shoulder) for an
oilfield sandstone saturated with brine. The diagonal squares are computed
by using UP-NN with the experimental relaxation data for the sandstone,
and the dashed curve without plotted points is computed by using UP-MT.
The cost of the MT constraint is 2.4% of the noise level, which, for the
parameters involved, is marginal for identifying a resolved peak rather than
a knee on the higher peak. The circles represent an input model for simula-
tion of the computed distribution. The model consists of three Gaussians:
8.3% at 10 ms with half-width 0.8 Np, 20.6% at 85 ms with half-width 0.4
Np, and 71.1% at 380 ms with half-width 0.1 Np. The S/N is 1000 for the

sandstone data and for the artificial data. Distributions computed by UP-
NN are shown by solid lines without plotted points for four sets of artificial
data, all for the above model but with different selections of random noise
having the same rms value. In both the main figure and the inset, the arrows
identify the one of these four distributions having the sharpest main peak,
which is sharper than that of the model for the artificial data and sharper
than that computed from the experimental data. It is illustrated that different
selections of random noise can lead to strikingly different computed distri-
butions and that noise can narrow a line as well as broaden it.
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ment variable smoothing of the computed distributions, so that
the smoothing penalty is roughly uniform over the sharp and
broad features. This permits the computation of sharp lines
without broadening by oversmoothing, and, in the same distri-
bution, a broad feature can be smoothed sufficiently that it is
not broken into unnecessary separate peaks.

There can be different objectives in the interpretation of
distributions of exponentials. One important objective can be
to know whether relaxation data (whether NMR or other) can
reliably separate the source of signal into two or more popula-
tions. Examples could be oil and water in a porous rock, water
in macropores and macropores in a rock having grains with
internal porosity, tissue reached and not reached by contrast
agent in biological systems, etc. Obviously, the existence of
separate physical populations in a sample does not guarantee
different or nonoverlapping relaxation times. In any case, there
are important interpretation objectives where we wish to know
if relaxation data require a significantly bimodal or multimodal
distribution of relaxation times, suggesting separate popula-
tions. The UP inversion appears to suppress maxima and min-
ima not required by the data, minimizing the appearance of
separate populations in the computed distributions to the extent
permitted by the data.

In many applications it may not affect interpretation if
one peak is broadened somewhat to avoid breaking up a
wider one. However, for many research applications it can
be of interest to know the widths or shapes of lines, including
when two or more lines of different widths are present, or
when features with tails are present, and UP appears to give
improved detail in these cases.

Constraints can be applied in the iterative procedure for
UP, including the usual NN constraint. The MT constraint
can force a unimodal solution. Hybrid constraints can allow
a bimodal solution. Expressions are given relating noise level
to linewidth for narrow lines, and expressions are given for
significance of increase or decrease of error, of fit when
constraints are applied or altered. The cost of the MT con-
straint can indicate cases where the relaxation data require
a multimodal solution.

The artificial data used in this work are well behaved in
the sense that the sets of relaxation data are sums of positive
exponential components with zero-mean Gaussian random
noise added. The laboratory relaxation data appear to be
well behaved in the same sense; the residual errors of fit
appear random and independent of data time (inversion-
recovery time for the experimental examples used). We have
processed data sent by a correspondent, where instrumental
problems have distorted relaxation curves. Here, inversions
using NN give substantial sequences of residuals with the
same sign. When UP without NN is applied to these data,
very large positive and negative peaks are obtained. This
gives evidence that the data are not a good set representing
multiexponential decay with positive coefficients. As seen

in Fig. 2, only slight undershoot is obtained with UP without
NN for that set of good data. When one set of bad data
was processed by UP-NN, two spurious sharp lines were
produced, but the nonrandom residuals gave adequate warn-
ing, and UP without NN gave very large negative peaks and
positive peaks.

In some combinations of sharp and broad features UP
may require many iterations, and termination criteria other
than convergence to infinitesimal differences between solu-
tions may be necessary. Computing time can be substantial
in the above circumstances, especially when output points
more closely spaced than customary are used, as is useful
to show the maximum amount of valid detail. However,
these are just the circumstances where the variable smooth-
ing feature of UP is most useful. With a few controls applied
to the iterative cycle, UP has functioned well, without manip-
ulation of parameters, on a very large variety of measured
and artificial data.
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